博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
hdu 1028 Ignatius and the Princess III (n的划分)
阅读量:5290 次
发布时间:2019-06-14

本文共 1958 字,大约阅读时间需要 6 分钟。

Ignatius and the Princess III

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)

Total Submission(s): 26219    Accepted Submission(s): 18101

Problem Description
"Well, it seems the first problem is too easy. I will let you know how foolish you are later." feng5166 says.
"The second problem is, given an positive integer N, we define an equation like this:
  N=a[1]+a[2]+a[3]+...+a[m];
  a[i]>0,1<=m<=N;
My question is how many different equations you can find for a given N.
For example, assume N is 4, we can find:
  4 = 4;
  4 = 3 + 1;
  4 = 2 + 2;
  4 = 2 + 1 + 1;
  4 = 1 + 1 + 1 + 1;
so the result is 5 when N is 4. Note that "4 = 3 + 1" and "4 = 1 + 3" is the same in this problem. Now, you do it!"
 

 

Input
The input contains several test cases. Each test case contains a positive integer N(1<=N<=120) which is mentioned above. The input is terminated by the end of file.
 

 

Output
For each test case, you have to output a line contains an integer P which indicate the different equations you have found.
 

 

Sample Input
4 10 20
 

 

Sample Output
5 42 627

 

题目大意:
求n有几种划分(3=1+2和3=2+1是同一种划分方案)。
 
dp[i][j]表示i分为j块一共有几种方案。
那么,一般的,考虑划分的j块中有多少个1,接着用截边法处理:
若有0个1,把这j块都减一,转化为i-j分为j块,dp[i][j]+=dp[i-j][j];
若有1个1,把这j块都减一,转化为i-j分为j-1块,dp[i][j]+=dp[i-j][j-1];
一直考虑到有k个1即可。
每个数的划分数即为sum dp[i][]。
 
#include 
#include
using namespace std;const int maxn=120;//动规打表int dp[maxn+5][maxn+5];int sum[maxn+5];int main(){ memset(dp,0,sizeof(dp)); memset(sum,0,sizeof(sum)); for(int i=1;i<=maxn;++i) { dp[i][1]=dp[i][i]=1; for(int j=2;j<=i-1;++j) { for(int k=0;k<=j;++k) { dp[i][j]+=dp[i-j][j-k]; } } for(int j=1;j<=i;++j) { sum[i]+=dp[i][j]; } } int n; while(scanf("%d",&n)!=EOF) { printf("%d\n",sum[n]); } return 0;}
View Code

 

转载于:https://www.cnblogs.com/acboyty/p/9797404.html

你可能感兴趣的文章
cocurrent包 原子性数据类型
查看>>
[vijos1049] 送给圣诞夜的礼品
查看>>
Codeforces 940F Machine Learning (带修改莫队)
查看>>
Jenkins Pipline语法
查看>>
Linux useradd -M -s
查看>>
define
查看>>
使用DD 创建SWAP
查看>>
【笔记篇】Ubuntu一日游
查看>>
.NET CORE 第二节 中间件的原理和自定义中间件
查看>>
开放有限元分析计算平台介绍
查看>>
Python中的函数
查看>>
静态路由和动态路由
查看>>
为C1Chart for WPF添加自定义标题、坐标轴单位标签以及旋转坐标轴注释
查看>>
51job_selenium测试
查看>>
代理商数据库_文本过滤处理
查看>>
Bootstrapping算法
查看>>
性能测试(LoadRunner)基础知识
查看>>
数据结构(七)排序---归并排序
查看>>
java多线程知识点汇总(二)多线程实例解析
查看>>
mysql的用户管理(二)
查看>>