Ignatius and the Princess III
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 26219 Accepted Submission(s): 18101
Problem Description
"Well, it seems the first problem is too easy. I will let you know how foolish you are later." feng5166 says. "The second problem is, given an positive integer N, we define an equation like this: N=a[1]+a[2]+a[3]+...+a[m]; a[i]>0,1<=m<=N; My question is how many different equations you can find for a given N. For example, assume N is 4, we can find: 4 = 4; 4 = 3 + 1; 4 = 2 + 2; 4 = 2 + 1 + 1; 4 = 1 + 1 + 1 + 1; so the result is 5 when N is 4. Note that "4 = 3 + 1" and "4 = 1 + 3" is the same in this problem. Now, you do it!"
Input
The input contains several test cases. Each test case contains a positive integer N(1<=N<=120) which is mentioned above. The input is terminated by the end of file.
Output
For each test case, you have to output a line contains an integer P which indicate the different equations you have found.
Sample Input
4 10 20
Sample Output
5 42 627
题目大意:
求n有几种划分(3=1+2和3=2+1是同一种划分方案)。
dp[i][j]表示i分为j块一共有几种方案。
那么,一般的,考虑划分的j块中有多少个1,接着用截边法处理:
若有0个1,把这j块都减一,转化为i-j分为j块,dp[i][j]+=dp[i-j][j];
若有1个1,把这j块都减一,转化为i-j分为j-1块,dp[i][j]+=dp[i-j][j-1];
一直考虑到有k个1即可。
每个数的划分数即为sum dp[i][]。
#include#include using namespace std;const int maxn=120;//动规打表int dp[maxn+5][maxn+5];int sum[maxn+5];int main(){ memset(dp,0,sizeof(dp)); memset(sum,0,sizeof(sum)); for(int i=1;i<=maxn;++i) { dp[i][1]=dp[i][i]=1; for(int j=2;j<=i-1;++j) { for(int k=0;k<=j;++k) { dp[i][j]+=dp[i-j][j-k]; } } for(int j=1;j<=i;++j) { sum[i]+=dp[i][j]; } } int n; while(scanf("%d",&n)!=EOF) { printf("%d\n",sum[n]); } return 0;}